
The proper analysis of data goes hand in hand with an appropriate sampling
design and experimental layout. If there are serious errors or problems in the
design of the study or in the collection of the data, rarely is it possible to repair
these problems after the fact. In contrast, if the study is properly designed and
executed, the data can often be analyzed in several different ways to answer dif-
ferent questions. In this chapter, we discuss the broad issues that you need to
consider when designing an ecological study. We can’t overemphasize the impor-
tance of thinking about these issues before you begin to collect data.

What Is the Point of the Study?

Although it may seem facetious and the answer self-evident, many studies are
initiated without a clear answer to this central question. Most answers will take
the form of a more focused question.

Are There Spatial or Temporal Differences in Variable Y?

This is the most common question that is addressed with survey data, and it rep-
resents the starting point of many ecological studies. Standard statistical meth-
ods such as analysis of variance (ANOVA) and regression are well-suited to
answer this question. Moreover, the conventional testing and rejection of a sim-
ple null hypothesis (see Chapter 4) yields a dichotomous yes/no answer to this
question. It is difficult to even discuss mechanisms without some sense of the
spatial or temporal pattern in your data. Understanding the forces controlling
biological diversity, for example, requires at a minimum a spatial map of species
richness. The design and implementation of a successful ecological survey
requires a great deal of effort and care, just as much as is needed for a success-
ful experimental study. In some cases, the survey study will address all of your
research goals; in other cases, a survey study will be the first step in a research
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project. Once you have documented spatial and temporal patterns in your data,
you will conduct experiments or collect additional data to address the mecha-
nisms responsible for those patterns.

What Is the Effect of Factor X on Variable Y?

This is the question directly answered by a manipulative experiment. In a field
or laboratory experiment, the investigator actively establishes different levels
of Factor X and measures the response of Variable Y. If the experimental design
and statistical analysis are appropriate, the resulting P-value can be used to test
the null hypothesis of no effect of Factor X. Statistically significant results sug-
gest that Factor X influences Variable Y, and that the “signal” of Factor X is
strong enough to be detected above the “noise” caused by other sources of nat-
ural variation.1 Certain natural experiments can be analyzed in the same
way, taking advantage of natural variation that exists in Factor X. However, the
resulting inferences are usually weaker because there is less control over con-
founding variables. We discuss natural experiments in more detail later in this
chapter.

Are the Measurements of Variable Y Consistent with the 
Predictions of Hypothesis H?

This question represents the classic confrontation between theory and data
(Hilborn and Mangel 1997). In Chapter 4, we discussed two strategies we use
for this confrontation: the inductive approach, in which a single hypothesis is
recursively modified to conform to accumulating data, and the hypothetico-
deductive approach, in which hypotheses are falsified and discarded if they do
not predict the data. Data from either experimental or observational studies
can be used to ask whether observations are consistent with the predictions of
a mechanistic hypothesis. Unfortunately, ecologists do not always state this ques-
tion so plainly. Two limitations are (1) many ecological hypotheses do not gen-
erate simple, falsifiable predictions; and (2) even when an hypothesis does
generate predictions, they are rarely unique. Therefore, it may not be possible
to definitively test Hypothesis H using only data collected on Variable Y.
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1 Although manipulative experiments allow for strong inferences, they may not reveal
explicit mechanisms. Many ecological experiments are simple “black box” experiments
that measure the response of the Variable Y to changes in Factor X, but do not elucidate
lower-level mechanisms causing that response. Such a mechanistic understanding may
require additional observations or experiments addressing a more focused question
about process.
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Using the Measurements of Variable Y, What Is the 
Best Estimate of Parameter q in Model Z?

Statistical and mathematical models are powerful tools in ecology and envi-
ronmental science. They allow us to forecast how populations and communi-
ties will change through time or respond to altered environmental conditions
(e.g., Sjögren-Gulve and Ebenhard 2000). Models can also help us to understand
how different ecological mechanisms interact simultaneously to control the
structure of communities and populations (Caswell 1988). Parameter estima-
tion is required for building predictive models and is an especially important
feature of Bayesian analysis (see Chapter 5). Rarely is there a simple one-to-
one correspondence between the value of Variable Y measured in the field and
the value of Parameter θ in our model. Instead, those parameters have to be
extracted and estimated indirectly from our data. Unfortunately, some of the
most common and traditional designs used in ecological experiments and field
surveys, such as the analysis of variance (see Chapter 10), are not very useful for
estimating model parameters. Chapter 7 discusses some alternative designs that
are more useful for parameter estimation.

Manipulative Experiments

In a manipulative experiment, the investigator first alters levels of the predic-
tor variable (or factor), and then measures how one or more variables of inter-
est respond to these alterations. These results are then used to test hypotheses
of cause and effect. For example, if we are interested in testing the hypothesis
that lizard predation controls spider density on small Caribbean islands, we could
alter the density of lizards in a series of enclosures and measure the resulting
density of spiders (e.g., Spiller and Schoener 1998). We could then plot these
data in a graph in which the x-axis (= independent variable) is lizard density,
and the y-axis (= dependent variable) is spider density (Figure 6.1A,B).

Our null hypothesis is that there is no relationship between these two
variables (Figure 6.1A). That is, spider density might be high or low in a par-
ticular enclosure, but it is not related to the density of lizards that were estab-
lished in the enclosure. Alternatively, we might observe a negative relationship
between spider and lizard density: enclosures with the highest lizard density
have the fewest spiders, and vice-versa (Figure 6.1B). This pattern then would
have to be subject to a statistical analysis such as regression (see Chapter 9)
to determine whether or not the evidence was sufficient to reject the null
hypothesis of no relationship between lizard and spider densities. From these
data we could also estimate regression model parameters that quantify the
strength of the relationship.
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Although field experiments are popular and powerful, they have several
important limitations. First, it is challenging to conduct experiments on large
spatial scales; over 80% of field experiments have been conducted in plots
of less than 1 m2 (Kareiva and Anderson 1988; Wiens 1989). When experi-
ments are conducted on large spatial scales, replication is inevitably sacrificed
(Carpenter 1989). Even when they are properly replicated, experiments con-
ducted on small spatial scales may not yield results that are representative of
patterns and processes occurring at larger spatial scales (Englund and Coop-
er 2003).

Second, field experiments are often restricted to relatively small-bodied and
short-lived organisms that are easy to manipulate. Although we always want to
generalize the results of our experiments to other systems, it is unlikely that the
interaction between lizards and spiders will tell us much about the interaction
between lions and wildebeest. Third, it is difficult to change one and only one
variable at a time in a manipulative experiment. For example, cages can exclude
other kinds of predators and prey, and introduce shading. If we carelessly com-
pare spider densities in caged plots versus uncaged “controls,” the effects of lizard
predation are confounded with other physical differences among the treatments.
We discuss solutions to confounding variables later in this chapter.

Finally, many standard experimental designs are simply unwieldy for realis-
tic field experiments. For example, suppose we are interested in investigating
competitive interactions in a group of eight spider species. Each treatment in
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Figure 6.1 Relationship between lizard density and spider density in manipulative
and natural field experiments. Each point represents a plot or quadrat in which both
spider density and lizard density have been measured. (A) The null hypothesis is
that lizard density has no effect on spider density. (B) The alternative hypothesis is
that lizard predation controls spider density, leading to a negative relationship
between these two variables.
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such an experiment would consist of a unique combination of species. Although
the number of species in each treatment ranges from only 1 to 8, the number
of unique combinations is 28 – 1 = 255. If we want to establish even 10 replicates
of each treatment (see “The Rule of 10,” discussed later in this chapter), we need
2550 plots. That may not be possible because of constraints on space, time, or
labor. Because of all these potential limitations, many important questions in
community ecology cannot be addressed with field experiments.

Natural Experiments

A natural experiment (Cody 1974) is not really an experiment at all. Instead,
it is an observational study in which we take advantage of natural variation that
is present in the variable of interest. For example, rather than manipulate lizard
densities directly (a difficult, expensive, and time-consuming endeavor), we could
census a set of plots (or islands) that vary naturally in their density of lizards
(Schoener 1991). Ideally, these plots would vary only in the density of lizards and
would be identical in all other ways. We could then analyze the relationship
between spider density and lizard density as illustrated in Figure 6.1.

Natural experiments and manipulative experiments superficially generate the
same kinds of data and are often analyzed with the same kinds of statistics. How-
ever, there are often important differences in the interpretation of natural and
manipulative experiments. In a manipulative experiment, if we have established
valid controls and maintained the same environmental conditions among the
replicates, any consistent differences in the response variable (e.g., spider den-
sity) can be attributed confidently to differences in the manipulated factor 
(e.g., lizard density).

We don’t have this same confidence in interpreting results of natural exper-
iments. In a natural experiment, we do not know the direction of cause and
effect, and we have not controlled for other variables that surely will differ
among the replicates. For the lizard–spider example, there are at least four
hypotheses that could account for a negative association between lizard and
spider densities:

1. Lizards may control spider density. This was the alternative hypothesis
of interest in the original field experiment.

2. Spiders may directly or indirectly control lizard density. Suppose, for
example, that large hunting spiders consume small lizards, or that spi-
ders are also preyed upon by birds that feed on lizards. In both cases,
increasing spider density may decrease lizard density, even though
lizards do feed on spiders.
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3. Both spider and lizard densities are controlled by an unmeasured envi-
ronmental factor. For example, suppose that spider densities are highest
in wet plots and lizard densities are highest in dry plots. Even if lizards
have little effect on spiders, the pattern in Figure 6.1B will emerge: wet
plots will have many spiders and few lizards, and dry plots will have
many lizards and few spiders.

4. Environmental factors may control the strength of the interaction
between lizards and spiders. For example, lizards might be efficient
predators on spiders in dry plots, but inefficient predators in wet 
plots. In such cases, the density of spiders will depend on both the 
density of lizards and the level of moisture in the plot (Spiller and
Schoener 1995).

These four scenarios are only the simplest ones that might lead to a negative
relationship between lizard density and spider density (Figure 6.2). If we add
double-headed arrows to these diagrams (lizards and spiders reciprocally affect
one another’s densities), there is an even larger suite of hypotheses that could
account for the observed relationships between spider density and lizard den-
sity (see Figure 6.1).

All of this does not mean that natural experiments are hopeless, however. In
many cases we can collect additional data to distinguish among these hypothe-
ses. For example, if we suspect that environmental variables such as moisture

142 CHAPTER 6 Designing Successful Field Studies

Moisture

Lizard density Spider density

Lizard density Spider densityLizard density Spider density

Moisture

Lizard density Spider density

Figure 6.2 Mechanistic hypotheses to account for correlations between lizard density
and spider density (see Figure 6.1). The cause-and-effect relationship might be from preda-
tor to prey (upper left) or prey to predator (upper right). More complicated models
include the effects of other biotic or abiotic variables. For example, there might be no
interaction between spiders and lizards, but densities of both are controlled by a third vari-
able, such as moisture (lower left). Alternatively, moisture might have an indirect effect by
altering the interaction of lizards and spiders (lower right).
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are important, we either can restrict the survey to a set of plots with compara-
ble moisture levels, or (better still) measure lizard density, spider density, and
moisture levels in a series of plots censused over a moisture gradient. Con-
founding variables and alternative mechanisms also can be problematic in
field experiments. However, their impacts will be reduced if the investigator con-
ducts the experiment at an appropriate spatial and temporal scale, establishes
proper controls, replicates adequately, and uses randomization to locate repli-
cates and assign treatments.

Overall, manipulative experiments allow for greater confidence in our infer-
ences about cause and effect, but they are limited to relatively small spatial scales
and short time frames. Natural experiments can be conducted at virtually any spa-
tial scale (small quadrats to entire continents) and over any time interval (week-
ly field measurements, to annual censuses, to fossil strata). However, it is more
challenging to tease apart cause-and-effect relationships in natural experiments.2

Snapshot versus Trajectory Experiments

Two variants of the natural experiment are the snapshot experiment and the
trajectory experiment (Diamond 1986). Snapshot experiments are replicated
in space, and trajectory experiments are replicated in time. For the data in Fig-
ure 6.1, suppose we censused 10 different plots in a single day. This is a snapshot
experiment in which the replication is spatial; each observation represents a dif-
ferent plot censused at the same time. On the other hand, suppose we visited a
single plot in 10 different years. This is a trajectory experiment in which the repli-
cation is temporal; each observation represents a different year in the study.

The advantages of a snapshot experiment are that it is rapid, and the spatial
replicates arguably are more statistically independent of one another than are
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2 In some cases, the distinction between manipulative and natural field experiments is
not clear-cut. Human activity has generated many unintended large-scale experiments
including eutrophication, habitat alteration, global climate change, and species intro-
ductions and removals. Imaginative ecologists can take advantage of these alterations
to design studies in which the confidence in the conclusions is very high. For example,
Knapp et al. (2001) studied the impacts of trout introductions to lakes in the Sierra
Nevada by comparing invertebrate communities in naturally fishless lakes, stocked
lakes, and lakes that formerly were stocked with fish. Many comparisons of this kind are
possible to document consequences of human activity. However, as human impacts
become more widespread and pervasive, it may be harder and harder to find sites that
can be considered unmanipulated controls. 
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the temporal replicates of a trajectory experiment. The majority of ecological
data sets are snapshot experiments, reflecting the 3- to 5-year time frame of most
research grants and dissertation studies.3 In fact, many studies of temporal
change are actually snapshot studies, because variation in space is treated as a
proxy variable for variation in time. For example, successional change in plant
communities can be studied by sampling from a chronosequence—a set of
observations, sites, or habitats along a spatial gradient that differ in the time of
origin (e.g., Law et al. 2003).

The advantage of a trajectory experiment is that it reveals how ecological
systems change through time. Many ecological and environmental models
describe precisely this kind of change, and trajectory experiments allow for
stronger comparisons between model predictions and field data. Moreover,
many models for conservation and environmental forecasting are designed to
predict future conditions, and data for these models are derived most reliably
from trajectory experiments. Many of the most valuable data sets in ecology
are long time-series data for which populations and communities at a site are
sampled year after year with consistent, standardized methods. However, tra-
jectory experiments that are restricted to a single site are unreplicated in space.
We don’t know if the temporal trajectories described from that site are typical
for what we might find at other sites. Each trajectory is essentially a sample size
of one at a given site.4

The Problem of Temporal Dependence

A more difficult problem with trajectory experiments is the potential non-inde-
pendence of data collected in a temporal sequence. For example, suppose you
measure tree diameters each month for one year in a plot of redwood trees. Red-

144 CHAPTER 6 Designing Successful Field Studies

3 A notable exception to short-term ecological experiments is the coordinated set of
studies developed at Long Term Ecological Research (LTER) sites. The National Science
Foundation (NSF) funded the establishment of these sites throughout the 1980s and
1990s specifically to address the need for ecological research studies that span decades
to centuries. See www.lternet.edu/.

4 Snapshot and trajectory designs show up in manipulative experiments as well. In par-
ticular, some designs include a series of measurements taken before and after a manip-
ulation. The “before” measurements serve as a type of “control” that can be compared
to the measurements taken after the manipulation or intervention. This sort of BACI
design (Before-After, Control-Impact) is especially important in environmental impact
analysis and in studies where spatial replication may be limited. For more on BACI, see
the section “Large Scale Studies and Environmental Impacts” later in this chapter, and
see Chapter 7.
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woods grow very slowly, so the measurements from one month to the next will
be virtually identical. Most foresters would say that you don’t have 12 inde-
pendent data points, you have only one (the average diameter for that year). On
the other hand, monthly measurements of a rapidly developing freshwater plank-
ton community reasonably could be viewed as statistically independent of one
another. Naturally, the further apart in time the samples are separated from one
another, the more they function as independent replicates.

But even if the correct census interval is used, there is still a subtle problem
in how temporal change should be modeled. For example, suppose you are
trying to model changes in population size of a desert annual plant for which
you have access to a nice trajectory study, with 100 years of consecutive annual
censuses. You could fit a standard linear regression model (see Chapter 9) to the
time series

Nt = β0 + β1t + ε (6.1)

In this equation, population size (Nt) is a linear function of the amount of
time (t) that has passed. The coefficients β0 and β1 are the intercept and slope
of this straight line. If β1 is less than 0.0, the population is shrinking with time,
and if β1 > 0, N is increasing. Here ε is a normally distributed white noise5 error
term that incorporates both measurement error and random variation in pop-
ulation size. Chapter 9 will explain this model in much greater detail, but we
introduce it now as a simple way to think about how population size might
change in a linear fashion with the passage of time.

However, this model does not take into account that population size changes
through births and deaths affecting current population size. A time-series model
would describe population growth as

Nt+1 = β0 + β1Nt + ε (6.2)
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5 White noise is a type of error distribution in which the errors are independent and
uncorrelated with one another. It is called white noise as an analogy to white light, which
is an equal mixture of short and long wavelengths. In contrast, red noise is dominated by
low-frequency perturbations, just as red light is dominated by low-frequency light waves.
Most time series of population sizes exhibit a reddened noise spectrum (Pimm and Red-
fearn 1988), so that variances in population size increase when they are analyzed at larger
temporal scales. Parametric regression models require normally distributed error terms,
so white noise distributions form the basis for most stochastic ecological models. Howev-
er, an entire spectrum of colored noise distributions (1/f noise) may provide a better fit to
many ecological and evolutionary datasets (Halley 1996).
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In this model, the population size in the next time step (Nt+1) depends not sim-
ply on the amount of time t that has passed, but rather on the population size
at the last time step (Nt). In this model, the constant β1 is a multiplier term
that determines whether the population is exponentially increasing (β1 > 1.0)
or decreasing (β1 < 1.0). As before, ε is a white noise error term.

The linear model (Equation 6.1) describes a simple additive increase of N
with time, whereas the time-series, or autoregressive model (Equation 6.2)
describes an exponential increase, because the factor β1 is a multiplier that, on
average, gives a constant percentage increase in population size at each time step.
The more important difference between the two models, however, is that the dif-
ferences between the observed and predicted population sizes (i.e., the devia-
tions) in the time-series model are correlated with one another. As a conse-
quence, there tend to be runs, or periods of consecutive increases followed by
periods of consecutive decreases. This is because the growth trajectory has a
“memory”—each consecutive observation (Nt+1) depends directly on the one
that came before it (the Nt term in Equation 6.2). In contrast, the linear model
has no memory, and the increases are a function only of time (and ε), and not
of Nt. Hence, the positive and negative deviations follow one another in a pure-
ly random fashion (Figure 6.3). Correlated deviations, which are typical of
data collected in trajectory studies, violate the assumptions of most conventional
statistical analyses.6 Analytical and computer-intensive methods have been devel-
oped for analyzing both sample data and experimental data collected through
time (Ives et al. 2003; Turchin 2003).

This does not mean we cannot incorporate time-series data into conventional
statistical analyses. In Chapters 7 and 10, we will discuss additional ways to ana-
lyze time-series data. These methods require that you pay careful attention to
both the sampling design and the treatment of the data after you have collect-
ed them. In this respect, time-series or trajectory data are just like any other data.

Press versus Pulse Experiments

In manipulative studies, we also distinguish between press experiments and
pulse experiments (Bender et al. 1984). In a press experiment, the altered con-
ditions in the treatment are maintained through time and are re-applied as nec-
essary to ensure that the strength of the manipulation remains constant. Thus,
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6 Actually, spatial autocorrelation generates the same problems (Legendre and
Legendre 1998; Lichstein et al. 2003). However, tools for spatial autocorrelation analysis
have developed more or less independently of time-series analyses, perhaps because
we perceive time as a strictly one-dimensional variable and space as a two- or three-
dimensional variable. 
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fertilizer may have to be re-applied to plants, and animals that have died or
disappeared from a plot may have to be replaced. In contrast, in a pulse exper-
iment, experimental treatments are applied only once, at the start of the study.
The treatment is not re-applied, and the replicate is allowed to “recover” from
the manipulation (Figure 6.4A).

Press and pulse experiments measure two different responses to the treat-
ment. The press experiment (Figure 6.4B) measures the resistance of the system
to the experimental treatment: the extent to which it resists change in the con-
stant environment created by the press experiment. A system with low resist-
ance will exhibit a large response in a press experiment, whereas a system with
high resistance will exhibit little difference between control and manipulated
treatments.

The pulse experiment measures the resilience of the system to the experi-
mental treatment: the extent to which the system recovers from a single per-
turbation. A system with high resilience will show a rapid return to control con-
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Figure 6.3 Examples of deterministic and stochastic time series, with and without
autocorrelation. Each population begins with 100 individuals. A linear model with-
out error (dashed line) illustrates a constant upward trend in population data. A lin-
ear model with a stochastic white noise error term (black line) adds temporally
uncorrelated variability. Finally, an autocorrelated model (blue line) describes popu-
lation size in the next time step (t + 1) as a function of the population size in the
current time step (t) plus random noise. Although the error term in this model is
still a simple random variable, the resulting time series shows autocorrelation—
there are runs of population increases followed by runs of population decreases. For
the linear model and the stochastic white noise model, the equation is Nt = a + bt +
ε, with a = 100 and b = 0.10. For the autocorrelated model, Nt+1 = a + bNt + ε, with
a = 0.0 and b = 1.0015. For both models with error, ε is a normal random variable: ε
~ N(0,1).
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ditions, whereas a system with low resilience will take a long time to recover;
control and manipulated plots will continue to differ for a long time after the
single treatment application.

The distinction between press and pulse experiments is not in the number of
treatment applications used, but in whether the altered conditions are main-
tained through time in the treatment. If environmental conditions remain con-
stant following a single perturbation for the duration of the experiment, the
design is effectively a press experiment. Another distinction between press and
pulse experiments is that the press experiment measures the response of the sys-
tem under equilibrium conditions, whereas the pulse experiment records tran-
sient responses in a changing environment.

Replication
How Much Replication?

This is one of the most common questions that ecologists and environmental
scientists ask of statisticians. The correct response is that the answer depends on
the variance in the data and the effect size—the difference that you wish to detect
between the averages of the groups being compared. Unfortunately, these two
quantities may be difficult to estimate, although you always should consider what
effect size would be reasonable to observe.

To estimate variances, many statisticians will recommend that you conduct
a pilot study. Unfortunately, pilot studies usually are not feasible—you rarely
have the freedom to set up and run a costly or lengthy study more than once.
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Figure 6.4 Ecological pulse and press experiments. The arrow indicates a treat-
ment application, and the line indicates the temporal trajectory of the response 
variable. The pulse experiment (A) measures the response to a single treatment
application (resilience), whereas the press experiment (B) measures the response
under constant conditions (resistance).
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Field seasons and grant proposals are too short for this sort of luxury. Howev-
er, you may be able to estimate reasonable ranges of variances and effect sizes
from previously published studies and from discussions with colleagues. You
can then use these values to determine the statistical power (see Chapter 4)
that will result from different combinations of replicates, variances, and effect
sizes (see Figure 4.5 for an example). At a minimum, however, you need to first
answer the following question:

How Many Total Replicates Are Affordable?

It takes time, labor, and money to collect either experimental or survey data, and
you need to determine precisely the total sample size that you can afford. If
you are conducting expensive tissue or sample analyses, the dollar cost may be
the limiting factor. However, in many studies, time and labor are more limiting
than money. This is especially true for geographical surveys conducted over large
spatial scales, for which you (and your field crew if you are lucky enough to have
one) may spend as much time traveling to study sites as you do collecting field
data. Ideally, all of the replicates should be measured simultaneously, giving you
a perfect snapshot experiment. The more time it takes to collect all the data,
the more conditions will have changed from the first sample to the last. For
experimental studies, if the data are not collected all at once, then the amount
of time that has passed since treatment application is no longer identical for all
replicates.

Obviously, the larger the spatial scale of the study, the harder it is to collect
all of the data within a reasonable time frame. Nevertheless, the payoff may be
greater because the scope of inference is tied to the spatial scale of analysis: con-
clusions based on samples taken only at one site may not be valid at other sites.
However, there is no point in developing an unrealistic sampling design. Care-
fully map out your project from start to finish to ensure it will be feasible.7 Only
once you know the total number of replicates or observations that you can col-
lect can you begin to design your experiment by applying the rule of 10.
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7 It can be very informative to use a stopwatch to time carefully how long it takes to
complete a single replicate measurement of your study. Like the efficiency expert
father in Cheaper By The Dozen (Gilbreth and Carey 1949), we put great stock in such
numbers. With these data, we can accurately estimate how many replicates we can take
in an hour, and how much total field time we will need to complete the census. The
same principle applies to sample processing, measurements that we make back in the
laboratory, the entry of data into the computer, and the long-term storage and curation
of data (see Chapter 8). All of these activities take time that needs to be accounted for
when planning an ecological study.
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The Rule of 10

The Rule of 10 is that you should collect at least 10 replicate observations for
each category or treatment level. For example, suppose you have determined
that you can collect 50 total observations in a experiment examining photo-
synthetic rates among different plant species. A good design for a one-way
ANOVA would be to compare photosynthetic rates among not more than five
species. For each species, you would choose randomly 10 plants and take one
measurement from each plant.

The Rule of 10 is not based on any theoretical principle of experimental design
or statistical analysis, but is a reflection of our hard-won field experience with
designs that have been successful and those that have not. It is certainly possi-
ble to analyze data sets with less than 10 observations per treatment, and we our-
selves often break the rule. Balanced designs with many treatment combinations
but only four or five replicates may be quite powerful. And certain one-way
designs with only a few treatment levels may require more than 10 replicates per
treatment if variances are large.

Nevertheless, the Rule of 10 is a solid starting point. Even if you set up the
design with 10 observations per treatment level, it is unlikely that you will end
up with that number. In spite of your best efforts, data may be lost for a variety
of reasons, including equipment failures, weather disasters, plot losses, human
disturbances or errors, improper data transcription, and environmental alter-
ations. The Rule of 10 at least gives you a fighting chance to collect data with
reasonable statistical power for revealing patterns.8 In Chapter 7, we will discuss
efficient sample designs and strategies for maximizing the amount of informa-
tion you can squeeze out of your data.

Large-Scale Studies and Environmental Impacts

The Rule of 10 is useful for small-scale manipulative studies in which the study
units (plots, leaves, etc.) are of manageable size. But it doesn’t apply to large-scale
ecosystem experiments, such as whole-lake manipulations, because replicates may
be unavailable or too expensive. The Rule of 10 also does not apply to many envi-
ronmental impact studies, where the assessment of an impact is required at a sin-
gle site. In such cases, the best strategy is to use a BACI design (Before-After,
Control-Impact). In some BACI designs, the replication is achieved through time:
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8 Another useful rule is the Rule of 5. If you want to estimate the curvature or non-lin-
earity of a response, you need to use at least five levels of the predictor variable. As we
will discuss in Chapter 7, a better solution is to use a regression design, in which the
predictor variable is continuous, rather than categorical with a fixed number of levels.
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the control and impact sites are censused repeatedly both before and after the
impact. The lack of spatial replication restricts the inferences to the impact site
itself (which may be the point of the study), and requires that the impact is not
confounded with other factors that may be co-varying with the impact. The
lack of spatial replication in simple BACI designs is controversial (Underwood
1994; Murtaugh 2002b), but in many cases they are the best design option (Stew-
art-Oaten and Bence 2001), especially if they are used with explicit time-series
modeling (Carpenter et al. 1989). We will return to BACI and its alternatives in
Chapters 7 and 10.

Ensuring Independence

Most statistical analyses assume that replicates are independent of one another.
By independence, we mean that the observations collected in one replicate do
not have an influence on the observations collected in another replicate. Non-
independence is most easily understood in an experimental context. Suppose
you are studying the response of hummingbird pollinators to the amount of
nectar produced by flowers. You set up two adjacent 5 m × 5 m plots. One plot
is a control plot; the adjacent plot is a nectar removal plot in which you drain
all of the nectar from the flowers. You measure hummingbird visits to flowers
in the two plots. In the control plot, you measure an average of 10 visits/hour,
compared to only 5 visits/hour in the removal plot.

However, while collecting the data, you notice that once birds arrive at the
removal plot, they immediately leave, and the same birds then visit the adjacent
control plot (Figure 6.5A). Clearly, the two sets of observations are not inde-
pendent of one another. If the control and treatment plots had been more wide-
ly separated in space, the numbers might have come out differently, and the aver-
age in the control plots might have been only 7 visits/hour instead of 10 visits/hour
(Figure 6.5B). When the two plots are adjacent to one another, non-independ-
ence inflates the difference between them, perhaps leading to a spuriously low 
P-value, and a Type I error (incorrect rejection of a true null hypothesis; see Chap-
ter 4). In other cases, non-independence may decrease the apparent differences
between treatments, contributing to a Type II error (incorrect acceptance of a
false null hypothesis). Unfortunately, non-independence inflates or deflates both
P-values and power to unknown degrees.

The best safeguard against non-independence is to ensure that replicates with-
in and among treatments are separated from one another by enough space or
time to ensure that the they do not affect one another. Unfortunately, we rarely
know what that distance or spacing should be, and this is true for both experi-
mental and observational studies. We should use common sense and as much
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biological knowledge as possible. Try to look at the world from the organism’s
perspective to think about how far to separate samples. Pilot studies, if feasible,
also can suggest appropriate spacing to ensure independence.

So why not just maximize the distance or time between samples? First, as we
described earlier, it becomes more expensive to collect data as the distance between
samples increases. Second, moving the samples very far apart can introduce
new sources of variation because of differences (heterogeneity) within or among
habitats. We want our replicates close enough together to ensure we are sampling
relatively homogenous or consistent conditions, but far enough apart to ensure
that the responses we measure are independent of one another.

In spite of its central importance, the independence problem is almost never
discussed explicitly in scientific papers. In the Methods section of a paper, you
are likely to read a sentence such as, “We measured 100 randomly selected
seedlings growing in full sunlight. Each measured seedling was at least 50 cm
from its nearest neighbor.” What the authors mean is, “We don’t know how far
apart the observations would have to have been in order to ensure independ-
ence. However, 50 cm seemed like a fair distance for the tiny seedlings we stud-
ied. If we had chosen distances greater than 50 cm, we could not have collected
all of our data in full sunlight, and some of the seedlings would have been col-
lected in the shade, which obviously would have influenced our results.”

152 CHAPTER 6 Designing Successful Field Studies

Control plotNectar 
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Figure 6.5 The problem of non-independence in
ecological studies is illustrated by an experimental
design in which hummingbirds forage for nectar in
control plots and in plots from which nectar has been
removed from all of the flowers. (A) In a non-inde-
pendent layout, the nectar removal and control plots
are adjacent to one another, and hummingbirds that
enter the nectar removal plot immediately leave and
begin foraging in the adjacent control plot. As a conse-
quence, the data collected in the control plot are not
independent of the data collected in the nectar
removal plot: the responses in one treatment influence
the responses in the other. (B) If the layout is modified
so that the two plots are widely separated, humming-
birds that leave the nectar removal plot do not neces-
sarily enter the control plot. The two plots are inde-
pendent, and the data collected in one plot are not
influenced by the presence of the other plot. Although
it is easy to illustrate the potential problem of non-
independence, in practice it is can be very difficult to
know ahead of time the spatial and temporal scales
that will ensure statistical independence.

https://www.facebook.com/groups/stats.ebooksandpapers/


Avoiding Confounding Factors
When factors are confounded with one another, their effects cannot be easily dis-
entangled. Let’s return to the hummingbird example. Suppose we prudently sep-
arated the control and nectar removal plots, but inadvertently placed the removal
plot on a sunny hillside and the control plot in a cool valley (Figure 6.6). Hum-
mingbirds forage less frequently in the removal plot (7 visits/hour), and the two
plots are now far enough apart that there is no problem of independence. How-
ever, hummingbirds naturally tend to avoid foraging in the cool valley, so the for-
aging rate also is low in these plots (6 visits/hour). Because the treatments are
confounded with temperature differences, we cannot tease apart the effects of
foraging preferences from those of thermal preferences. In this case, the two forces
largely cancel one another, leading to comparable foraging rates in the two plots,
although for very different reasons.

This example may seem a bit contrived. Knowing the thermal preferences of
hummingbirds, we would not have set up such an experiment. The problem is
that there are likely to be unmeasured or unknown variables—even in an appar-
ently homogenous environment—that can have equally strong effects on our
experiment. And, if we are conducting a natural experiment, we are stuck with
whatever confounding factors are present in the environment. In an observa-
tional study of hummingbird foraging, we may not be able to find plots that dif-
fer only in their levels of nectar rewards but do not also differ in temperature
and other factors known to affect foraging behavior.
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Control plotNectar 
removal plot

CoolerWarmer

Figure 6.6 A confounded experimental design. As in Figure 6.5, the
study establishes control and experimental nectar removal plots to evalu-
ate the responses of foraging hummingbirds. In this design, although the
plots are far enough apart to ensure independence, they have been placed
at different points along a thermal gradient. Consequently, the treatment
effects are confounded with differences in the thermal environment. The
net result is that the experiment compares data from a warm nectar
removal plot with data from a cool control plot.

https://www.facebook.com/groups/stats.ebooksandpapers/


Replication and Randomization

The dual threats of confounding factors and non-independence would seem
to threaten all of our statistical conclusions and render even our experimental
studies suspect. Incorporating replication and randomization into experimental
designs can largely offset the problems introduced by confounding factors and
non-independence. By replication, we mean the establishment of multiple plots
or observations within the same treatment or comparison group. By random-
ization, we mean the random assignment of treatments or selection of samples.9

Let’s return one more time to the hummingbird example. If we follow the
principles of randomization and replication, we will set up many replicate
control and removal plots (ideally, a minimum of 10 of each). The location of
each of these plots in the study area will be random, and the assignment of the
treatment (control or removal) to each plot also will be random (Figure 6.7).10

How will randomization and replication reduce the problem of confound-
ing factors? Both the warm hillside, the cool valley, and several intermediate sites
each will have multiple plots from both control and nectar removal treatments.
Thus, the temperature factor is no longer confounded with the treatment, as
all treatments occur within each level of temperature. As an additional benefit,
this design will also allow you to test the effects of temperature as a covariate on
hummingbird foraging behavior, independent of the levels of nectar (see Chap-
ters 7 and 10). It is true that hummingbird visits will still be more frequent on
the warm hillside than in the cool valley, but that will be true for replicates of
both the control and nectar removal. The temperature will add more variation
to the data, but it will not bias the results because the warm and cool plots will
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9 Many samples that are claimed to be random are really haphazard. Truly random
sampling means using a random number generator (such as the flip of a fair coin, the
roll of a fair die, or the use of a reliable computer algorithm for producing random num-
bers) to decide which replicates to use. In contrast, with haphazard sampling, an ecolo-
gist follows a set of general criteria [e.g., mature trees have a diameter of more than 3
cm at breast height (dbh = 1.3 m)] and selects sites or organisms that are spaced
homogenously or conveniently within a sample area. Haphazard sampling is often nec-
essary at some level because random sampling is not efficient for many kinds of organ-
isms, especially if their distribution is spatially patchy. However, once a set of organisms
or sites is identified, randomization should be used to sample or to assign replicates to
different treatment groups.

10 Randomization takes some time, and you should do as much of it as possible in
advance, before you get into the field. It is easy to generate random numbers and sim-
ulate random sampling with computer spreadsheets. But it is often the case that you
will need to generate random numbers in the field. Coins and dice (especially 10-sided
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be distributed approximately equally between the control and removal treat-
ments. Of course, if we knew ahead of time that temperature was an important
determinant of foraging behavior, we might not have used this design for the
experiment. Randomization minimizes the confounding of treatments with
unknown or unmeasured variables in the study area.

It is less obvious how randomization and replication reduce the problem of
non-independence among samples. After all, if the plots are too close together,
the foraging visits will not be independent, regardless of the amount of replica-
tion or randomization. Whenever possible, we should use common sense and
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Warmer Cooler

Figure 6.7 A properly replicated
and randomized experimental
design. The study establishes plots
as in Figures 6.6. Each square rep-
resents a replicate control plot
(black dots) or nectar removal plot
(gray dots). The plots are separated
by enough distance to ensure inde-
pendence, but their location within
the temperature gradient has been
randomized. There are 10 repli-
cates for each of the two treat-
ments. The spatial scale of the
drawing is larger than in Figure 6.6.

gaming dice) are useful for this purpose. A clever trick is to use a set of coins as a bina-
ry random number generator. For example, suppose you have to assign each of your
replicates to one of 8 different treatments, and you want to do so randomly. Toss 3
coins, and convert the pattern of heads and tails to a binary number (i.e., a number in
base 2). Thus, the first coin indicates the 1s, the second coin indicates the 2s, the third
coin indicates the 4s, and so on. Tossing 3 coins will give you a random integer
between 0 and 7. If your three tosses are heads, tails, heads (HTH), you have a 1 in 
the one’s place, a 0 in the two’s place, and a 1 in the four’s place. The number is 
1 + 0 + 4 = 5. A toss of (THT) is 0 + 2 + 0 = 2. Three tails gives you a 0 (0 + 0 + 0) and
three heads give you a 7 (1 + 2 + 4). Tossing 4 coins will give you 16 integers, and 5
coins will give you 32.

An even easier method is to take a digital stopwatch into the field. Let the watch run
for a few seconds and then stop it without looking at it. The final digit that measures
time in 1/100th of a second can be used as a random uniform digit from 0 to 9. A statisti-
cal analysis of 100 such random digits passed all of the standard diagnostic tests for
randomness and uniformity (B. Inouye, personal communication).
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knowledge of biology to separate plots or samples by some minimum distance
or sampling interval to avoid dependence. However if we do not know all of the
forces that can cause dependence, a random placement of plots beyond some
minimum distance will ensure that the spacing of the plots is variable. Some plots
will be relatively close, and some will be relatively far apart. Therefore, the effect
of the dependence will be strong in some pairs of plots, weak in others, and non-
existent in still others. Such variable effects may cancel one another and can reduce
the chances that results are consistently biased by non-independence.

Finally, note that randomization and replication only are effective when they
are used together. If we do not replicate, but simply assign randomly the con-
trol and treatment plots to the hillside or the valley, the design is still confounded
(see Figure 6.6). Similarly, if we replicate the design, but assign all 10 of the con-
trols to the valley and all 10 of the removals to the hillside, the design is also con-
founded (Figure 6.8). It is only when we use multiple plots and assign the treat-
ments randomly that the confounding effect of temperature is removed from
the design (see Figure 6.7). Indeed, it is fair to say that any unreplicated design
is always going to be confounded with one or more environmental factors.11

Although the concept of randomization is straightforward, it must be applied
at several stages in the design. First, randomization applies only to a well-defined,
initially non-random sample space. The sample space doesn’t simply mean the
physical area from which replicates are sampled (although this is an important
aspect of the sample space). Rather, the sample space refers to a set of elements
that have experienced similar, though not identical, conditions.

Examples of a sample space might include individual cutthroat trout that are
reproductively mature, lightfall gaps created by fires, old-fields abandoned 10–20
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11 Although confounding is easy to recognize in a field experiment of this sort, it may
not be apparent that the same problem exists in laboratory and greenhouse experi-
ments. If we rear insect larvae at high and low temperatures in two environmental
chambers, this is a confounded design because all of the high temperature larvae are in
one chamber and all of the low temperature larvae are in the other. If environmental
factors other than temperature also differ between the chambers, their effects are con-
founded with temperature. The correct solution would be to rear each larva in its own
separate chamber, thereby ensuring that each replicate is truly independent and that
temperature is not confounded with other factors. But this sort of design simply is too
expensive and wasteful of space ever to be used. Perhaps the argument can be made
that environmental chambers and greenhouses really do differ only in temperature and
no other factors, but that is only an assumption that should be tested explicitly. In
many cases, the environment in environmental chambers is surprisingly heteroge-
neous, both within and between chambers. Potvin (2001) discusses how this variability
can be measured and then used to design better laboratory experiments.
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years ago, or large bleached coral heads at 5–10 meters depth. Once this sample
space has been defined clearly, sites, individuals, or replicates that meet the cri-
teria should be chosen at random. As we noted in Chapter 1, the spatial and tem-
poral boundaries of the study will dictate not only the sampling effort involved,
but also the domain of inference for the conclusions of the study.

Once sites or samples are randomly selected, treatments should be assigned
to them randomly, which ensures that different treatments are not clumped in
space or confounded with environmental variables.12 Samples should also be
collected and treatments applied in a random sequence. That way, if environ-
mental conditions change during the experiment, the results will not be 
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Figure 6.8 A replicated, but confounded, design. As in Figures 6.5, 6.6,
and 6.7, the study establishes control and experimental nectar removal
plots to evaluate the responses of foraging hummingbirds. Each square
represents a replicate control plot (black dots) or nectar removal plot
(gray dots). If treatments are replicated but not assigned randomly, the
design still confounds treatments with underlying environmental gradi-
ents. Replication combined with randomization and sufficient spacing of
replicates (see Figure 6.7) is the only safeguard against non-independence
(see Figure 6.5) and confounding (see Figures 6.6 and 6.8).

12 If the sample size is too small, even a random assignment can lead to spatial clumping
of treatments. One solution would be to set out the treatments in a repeated order
(…123123…), which ensures that there is no clumping. However, if there is any non-
independence among treatments, this design may exaggerate its effects, because Treat-
ment 2 will always occur spatially between Treatments 1 and 3. A better solution would
be to repeat the randomization and then statistically test the layout to ensure there is no
clumping. See Hurlbert (1984) for a thorough discussion of the numerous hazards that
can arise by failing to properly replicate and randomize ecological experiments.
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confounded. For example, if you census all of your control plots first, and your
field work is interrupted by a fierce thunderstorm, any impacts of the storm will
be confounded with your manipulations because all of the treatment plots will
be censused after the storm. These same provisos hold for non-experimental
studies in which different plots or sites have to be censused. The caveat is that
strictly random censusing in this way may be too inefficient because you will
usually not be visiting neighboring sites in consecutive order. You may have to
compromise between strict randomization and constraints imposed by sam-
pling efficiency.

All methods of statistical analysis—whether they are parametric, Monte Carlo,
or Bayesian (see Chapter 5)—rest on the assumption of random sampling at an
appropriate spatial or temporal scale. You should get in the habit of using ran-
domization whenever possible in your work.

Designing Effective Field Experiments and Sampling Studies

Here are some questions to ask when designing field experiments and sampling
studies. Although some of these questions appear to be specific to manipula-
tive experiments, they are also relevant to certain natural experiments, where
“controls” might consist of plots lacking a particular species or set of abiotic
conditions.

Are the Plots or Enclosures Large Enough to Ensure Realistic Results?

Field experiments that seek to control animal density must necessarily constrain
the movement of animals. If the enclosures are too small, the movement, for-
aging, and mating behaviors of the animals may be so unrealistic that the results
obtained will be uninterpretable or meaningless (MacNally 2000a). Try to use
the largest plots or cages that are feasible and that are appropriate for the organ-
ism you are studying. The same considerations apply to sampling studies: the
plots need to be large enough and sampled at an appropriate spatial scale to
answer your question.

What Is the Grain and Extent of the Study?

Although much importance has been placed on the spatial scale of an experi-
ment or a sampling study, there are actually two components of spatial scale that
need to be addressed: grain and extent. Grain is the size of the smallest unit of
study, which will usually be the size of an individual replicate or plot. Extent is
the total area encompassed by all of the sampling units in the study. Grain and
extent can be either large or small (Figure 6.9). There is no single combination
of grain and extent that is necessarily correct. However, ecological studies with
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both a small grain and a small extent, such as pitfall catches of beetles in a sin-
gle forest plot, may sometimes be too limited in scope to allow for broad con-
clusions. On the other hand, studies with a large grain but a small extent, such
as whole-lake manipulations in a single valley, may be very informative. Our
own preference is for studies with a small grain, but a medium or large extent,
such as ant and plant censuses in small plots (5 m × 5 m) across New England
(Gotelli and Ellison 2002a,b) or eastern North America (Gotelli and Arnett
2000), or on small mangrove islands in the Caribbean (Farnsworth and Ellison
1996a). The small grain allows for experimental manipulations and observa-
tions taken at scales that are relevant to the organism, but the large extent
expands the domain of inference for the results. In determining grain and extent,
you should consider both the question you are trying to ask and the constraints
on your sampling.

Does the Range of Treatments or Census Categories Bracket or Span the Range
of Possible Environmental Conditions?

Many field experiments describe their manipulations as “bracketing or span-
ning the range of conditions encountered in the field.” However, if you are try-
ing to model climate change or altered environments, it may be necessary to also
include conditions that are outside the range of those normally encountered in
the field.
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Figure 6.9 Spatial grain and spatial extent in ecological studies. Each
square represents a single plot. Spatial grain measures the size of the sam-
pling units, represented by small or large squares. Spatial extent measures
the area encompassing all of the replicates of the study, represented by
closely grouped or widely spaced squares.
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Have Appropriate Controls Been Established to Ensure that Results Reflect
Variation Only in the Factor of Interest?

It is rare that a manipulation will change one and only one factor at a time. For
example, if you surround plants with a cage to exclude herbivores, you have also
altered the shading and moisture regime. If you simply compare these plants to
unmanipulated controls, the herbivore effects are confounded with the differ-
ences in shading and moisture. The most common mistake in experimental
designs is to establish a set of unmanipulated plots and then treat those as a
control. Usually, an additional set of control plots that contain some minimal
alteration will be necessary to properly control for the manipulations. In the exam-
ple described above, an open-sided cage roof will allow herbivores access to plants,
but will still include the shading effects of the cage. With this simple design of
three treatments (Unmanipulated, Cage control, Herbivore exclusion), you can
make the following contrasts:

1. Unmanipulated versus Cage control. This comparison reveals the extent
to which shading and physical changes due to the cage per se are affect-
ing plant growth and responses.

2. Cage control versus Herbivore exclusion. This comparison reveals the
extent to which herbivory alters plant growth. Both the Control and Her-
bivore exclusion plots experience the shading effects of the cage, so any
difference between them can be attributed to the effect of herbivores.

3. Unmanipulated versus Herbivore exclusion. This comparison measures
the combined effect of both the herbivores and the shading on plant
growth. Because the experiment is designed to measure only the 
herbivore effect, this particular comparison confounds treatment 
and caging effects.

In Chapter 10, we will explain how you use can use contrasts after analysis of
variance to quantify these comparisons.

Have All Replicates Been Manipulated in the Same Way Except for the Intended
Treatment Application?

Again, appropriate controls usually require more than lack of manipulation. If
you have to push back plants to apply treatments, you should push back plants
in the control plots as well (Salisbury 1963; Jaffe 1980). In a reciprocal trans-
plant experiment with insect larvae, live animals may be sent via overnight couri-
er to distant sites and established in new field populations. The appropriate con-
trol is a set of animals that are re-established in the populations from which they
were collected. These animals will also have to receive the “UPS treatment” and
be sent through the mail system to ensure they receive the same stress as the ani-
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mals that were transplanted to distant sites. If you are not careful to ensure
that all organisms are treated identically in your experiments, your treatments
will be confounded with differences in handling effects (Cahill et al. 2000).

Have Appropriate Covariates Been Measured in Each Replicate?

Covariates are continuous variables (see Chapter 7) that potentially affect the
response variable, but are not necessarily controlled or manipulated by the inves-
tigator. Examples include variation among plots in temperature, shade, pH, or
herbivore density. Different statistical methods, such as analysis of covariance (see
Chapter 10), can be used to quantify the effect of covariates.

However, you should avoid the temptation to measure every conceivable
covariate in a plot just because you have the instrumentation (and the time) to
do so. You will quickly end up with a dataset in which you have more variables
measured than you have replicates, which causes additional problems in the
analysis (Burnham and Anderson 2010). It is better to choose ahead of time
the most biologically relevant covariates, measure only those covariates, and use
sufficient replication. Remember also that the measurement of covariates is use-
ful, but it is not a substitute for proper randomization and replication.

Summary

The sound design of an ecological experiment first requires a clear statement of
the question being asked. Both manipulative and observational experiments can
answer ecological questions, and each type of experiment has its own strengths
and weaknesses. Investigators should consider the appropriateness of using a press
versus a pulse experiment, and whether the replication will be in space (snapshot
experiment), time (trajectory experiment), or both. Non-independence and con-
founding factors can compromise the statistical analysis of data from both
manipulative and observational studies. Randomization, replication, and knowl-
edge of the ecology and natural history of the organisms are the best safeguards
against non-independence and confounding factors. Whenever possible, try to
use at least 10 observations per treatment group. Field experiments usually
require carefully designed controls to account for handling effects and other
unintended alterations. Measurement of appropriate environmental covariates
can be used to account for uncontrolled variation, although it is not a substitute
for randomization and replication.
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